C2-C3-C4	110(1)	N21-C4-C5	125 (1)
C3-C2-C1	105 (1)	N21-C4-C3	108 (1)
N21-C1-C2	111 (1)	C5-C51-C56	122 (1)
C2-C1-C20	123 (1)	C5-C51-C52	119(1)
N21-C1-C20	125 (1)	C52-C51-C56	119 (1)
C1-C20-C201	119 (1)	C51-C52-C53	120(1)
C1C20C19	126(1)	C52-C53-C54	121 (1)
C19-C20-C201	116(1)	C53-C54-C55	120(1)
N24-C19-C20	125 (1)	C54-C55-C56	119 (1)
C20-C19-C18	128 (1)	C51-C56-C55	122 (1)
N24C19C18	107 (1)	C10-C101-C10	121 (1)
C19—C18—C17	107 (1)	C102-C101-C10	118(1)
C18-C17-C16	109 (1)	C101-C102-C10	121 (1)
N24-C16-C17	106(1)	C102-C103-C104	120 (1)
C17—C16—C15	126(1)	C103-C104-C105	120 (1)
N24-C16-C15	128 (1)	C104-C105-C106	121 (1)
C16-C15-C151	116(1)	C101-C106-C105	121 (1)
C16-C15-C14	124 (1)	C20-C201-C206	119(1)
C14-C15-C151	120(1)	C20-C201-C202	122 (1)
N23-C14-C15	126(1)	C202-C201-C206	119(1)
C15-C14-C13	124 (1)	C201-C202-C203	120(1)
N23-C14-C13	110(1)	C202-C203-C204	122 (1)
C14-C13-C12	105 (1)	C203-C204-C205	119(1)
C13-C12-C11	109 (1)	C204—C205—C206	120(1)
N23-C11-C12	109 (3)	C201-C206-C205	120(1)
C12-C11-C10	126 (1)	C155-C156-C151	118(1)
N23-C11-C10	124 (1)	C156-C155-C154	122 (2)
C11-C10-C101	119 (1)	C155-C154-C153	119 (2)
C11-C10-C9	123 (1)	C154-C153-C152	120(1)
C9—C10—C101	118 (1)	C153-C152-C151	122 (1)
N22-C9-C10	127 (1)	C156-C151-C152	118 (1)
C10—C9—C8	128 (1)	C15-C151-C152	123 (1)
N22-C9-C8	105 (1)	C15-C151-C156	118 (1)
N21-C1-C20-C201	170(1)	O31-N31-C3-C2	40 (2
N22-C6-C5-C51	-172(1)	O32-N31-C3-C4	36 (2
N23-C11-C10-C101	158 (1)	O121-N121-C12-C11	-28 (2
N24-C16-C15-C151	178 (1)	O122-N121-C12-C13	3 - 38 (2
N31-C3-C4-N21	-167(1)	C51-C5-C4-N21	-157 (1
N31-C3-C2-C1	168 (1)	C101-C10-C9-N22	174 (1
N121-C12-C13-C14	-164 (1)	C151-C15-C14-N23	- 165 (1
N121-C12-C11-N23	161 (1)	C201-C20-C19-N24	175 (1

The data were collected with a scan width of $(0.90 + 2.70 \tan\theta)^{\circ}$ in ω , a scan rate of $5.5^{\circ} \min^{-1}$ and a background count for one quarter of the total time spent on each count. The structure was solved using *SHELXS86* (Sheldrick, 1985) and refined by full-matrix least squares with *SHELX76* (Sheldrick, 1976). All H atoms apart from H202 and the solvent H atoms were located in the difference map and refined. The high final *R* is attributed to the small size and poor quality of the crystal specimen.

The authors thank the Department of Science and Technology, Government of India, New Delhi, and University Grants Commission, for the support of the X-ray diffractometer facility.

References

©1994 International Union of Crystallography Printed in Great Britain – all rights reserved Bhyrappa, P. & Krishnan, V. (1991). Inorg. Chem. 30, 239-247.

- Bhyrappa, P., Nethaji, M. & Krishnan, V. (1993). Chem. Lett. In the press.
- Chen, B. M. L. & Tulinsky, A. (1971). J. Am. Chem. Soc. 94, 4141-4151.
- Dahal, S. & Krishnan, V. (1993). In preparation.
- Gust, D., Moore, T. A., Luttruli, D. K., Seely, G. R., Bittermann, E., Bensasson, R. B., Rougee, M., Land, E. J., Deschryver, F. C. & Auweraer, M. V. D. (1990). *Photochem. Photobiol.* 51, 419–426.
- Mandon, D., Ochsenbein, P., Fischer, J., Weiss, R., Jayaraj, K., Austin, R. N., Gold, A., White, P. S., Brigaud, O., Battioni, P. & Mansuy, D. (1992). *Inorg. Chem.* **31**, 2044–2049.
- Motherwell, W. D. S. & Clegg, W. (1978). PLUTO. Program for Plotting Molecular and Crystal Structures. Univ. of Cambridge, England.
- Rettig, W. (1986). Angew. Chem. Int. Ed. Engl. 25, 971-988.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Göttingen, Germany.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
- Silvers, S. J. & Tulinsky, A. (1967). J. Am. Chem. Soc. 89, 3331-3337.
- Takahashi, K., Hase, S., Komura, T., Imanaga, H. & Ohno, O. (1992). Bull. Chem. Soc. Jpn, 65, 1475–1481.

Acta Cryst. (1994). C50, 317-324

The Structures of *endo*-13-*syn*-Methyltricyclo[8.2.1.0^{2,9}]trideca-5,11-dien-13-*anti*-ol, *endo*-13-*syn*-Methyltricyclo[8.2.1.0^{2,9}]trideca-5,11-dien-13-*anti*-yl Acetate and its Corresponding *endo-endo-anti* Diels-Alder Adducts with 1,2,3,4-Tetrachloro-5,5-dimethoxy-1,3-cyclopentadiene and Hexachlorocyclopentadiene

J. GABRIEL GARCIA,*† GUILLERMO MORALES, FRANK R. FRONCZEK AND MARK L. MCLAUGHLIN

Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, USA

(Received 9 March 1993; accepted 5 July 1993)

Abstract

endo-13-*syn*-Methyltricyclo[8.2.1.0^{2.9}]trideca-5,11dien-13-*anti*-ol, (1): there are four independent molecules in the asymmetric unit. In two the cyclooctene ring adopts the twist-boat conformation and in the other two, the chair conformation. There are near-

Lists of structure factors, anisotropic displacement parameters, leastsquares-planes data, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71522 (30 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: MU1041]

Barkigia, K. M., Berber, M. D., Fajer, J., Medforth, C. J., Renner, M. W. & Smith, K. M. (1990). J. Am. Chem. Soc. 112, 8851-8857.

[†] Present address: Lawrence Berkeley Laboratory, 1 Cyclotron Road, MS 55-121 Berkeley, California 94703, USA.

zero torsion angles at the ring-fusion bonds in the boat and chair forms [-1.1 (4), 1.6 (4), 2.2 (4) and-1.9 (4)°, respectively]. The torsion angles about the bonds comprising the sides of the twist boat are 25.7 (5) and 6.2 (6)°, and -1.0 (4) and -14.1 (5)°, respectively. The torsion angles about the bonds comprising the sides of the chair are 106.3 (4) and -109.6 (4)°, and 109.0 (3) and -107.3 (4)°, respectively. The cyclooctene and norbornene C = C bonds have lengths of 1.342(5) and 1.307(4) Å, 1.312(5)and 1.313 (5) Å, 1.315 (5) and 1.308 (4) Å and 1.303 (6) and 1.305 (5) Å, respectively. endo-13-syn-Methyltricyclo[8.2.1.0^{2,9}]trideca-5,11-dien-13-*anti*-yl acetate (2): the cyclooctene ring adopts the twistboat conformation. There is a near-zero torsion angle of the boat at the ring fusion bond $[-0.1 (3)^{\circ}]$. The torsion angles about the bonds comprising the sides of the boat are -10.0 (3) and -27.8 (3)°. The cyclooctene and norbornene C=C bonds have lengths of 1.296 (2) and 1.314 (5) Å, respectively. endo.endo.anti-18,18-Dimethoxy-17-syn-methyl-6,7,-8,9-tetrachloropentacyclo[12.2.1.1^{6,9}.0^{2,13}.0^{5,10}]octadeca-7,15-dien-17-anti-yl acetate (3) and endo, endo, anti-6, 7, 8, 9, 18, 18-Hexachloro-17-synmethylpentacyclo [12.2.1.1^{6,9}.0^{2,13}.0^{5,10}]octadeca-7,15dien-17-anti-yl acetate (4): the cyclooctane ring adopts the chair conformation. The near-zero torsion angles of the chair occur at the ring fusion bonds [-1.7 (4) and -1.4 (4) for (3) and -3.3 (2) and

 $-2.7 (2)^{\circ}$ for (4)]. The torsion angles about the bonds comprising the sides of the chair are 119.1 (3) and $-115.9 (3)^{\circ}$ for (3) and 119.4 (2) and $-116.2 (2)^{\circ}$ for (4). The HC=CH and ClC=CCl bonds are of lengths 1.317 (5) and 1.322 (5) Å for (3), and 1.312 (3) and 1.319 (3) Å for (4), respectively.

Comment

The crystal structures of a number of substituted cycloocta(e)nes have been determined in our laboratory over the past two years (Garcia, Fronczek & McLaughlin, 1991*a*,*b*,*c*,*d*, 1992*a*,*b*, 1994; Li, Fronczek & McLaughlin, 1992) on account of a study of conformation-dependent $\pi - \sigma - \pi$ electronic interactions (Garcia, Fronczek & McLaughlin, 1991e; Garcia & McLaughlin, 1991). The crystal structure determinations of the title compounds are part of an ongoing program of structure analysis of some new derivatives bearing the cycloocta(e)ne moiety. Crystals suitable for analysis of (1) (Eaton, Sidhu, Langford, Cullison & Pietruszewski, 1981), m.p. 330 K, were deposited in the reaction flask: crystals of (2) (Eaton, Sidhu, Langford, Cullison & Pietruszewski, 1981), m.p. 345–346 K, were grown by slow evaporation of a 1:1:10 tetrahydrofuran:2propanol:2,2,4-trimethylpentane solution; crystals of (3), m.p. 503–505 K, and (4), m.p. 485–488 K, were

prepared by a modification of the method followed by Akhtar, Fray & Yarrow (1968) and were grown by slow cooling of a 1:3 2,2,4-trimethylpentane:2propanol solution and slow evaporation of a 4:1 hexanes:ethyl acetate solution, respectively.

The asymmetric unit of (1) consists of four molecules: A and B in the twist-boat conformation and C and D in the chair conformation. The four molecules are arranged such that their OH groups point inwards towards a central point (at 0.22, 0.02, 0.75), forming four hydrogen bonds in the shape of a rhombus. The O…O distances are in the range 2.763 (3)-2.788 (2) Å and the O...O...O angles are 91.89 (7)° at O1A, 88.38 (6)° at O1B, 91.66 (7)° at O1C and 88.07 (6)° at O1D. The angles about H in these four hydrogen bonds range from 163 (2) to 170 (2)°. Structural data for endo, endo, anti-1,6,7,8,9,-14,15,16-octachloro-17,17,18,18-tetramethoxypentacyclo[12.2.1.1^{6,9}.0^{2,13}.0^{5,10}]octadeca-7,15-diene (Garcia, Fronczek & McLaughlin, 1991a), endo,endo, anti-17, 17, 18, 18-tetramethoxypentacyclo [12.2.-1.1^{6,9}.0^{2,13}.0^{5,10}]octadeca-7,15-diene (Garcia, Fronczek & McLaughlin, 1991a), endo, endo, anti1,6,7,8,9,14,15,16-octachloropentacyclo[12.2.1.1^{6.9}.- $0^{2.13}.0^{5.10}$]octadeca-7,15-diene (Garcia, Fronczek & McLaughlin, 1991*b*), *endo*-tricyclo[8.2.1.0^{2.9}]trideca-5,11-dien-13-one (Garcia, Fronczek & McLaughlin, 1991*c*), *endo,endo,anti*-pentacyclo[12.2.1.1^{6.9}.0^{2.13}.- $0^{5.10}$]octadeca-7,15-diene-17,18-dione (Garcia, Fronczek & McLaughlin, 1991*d*), *endo,endo,anti*-1,14,15,16,17,17-hexachloro-18,18-diethoxypenta-cyclo[12.2.1.1^{6.9}.0^{2.13}.0^{5.10}]octadeca-7,15-diene (Garcia, Fronczek & McLaughlin, 1991*d*), *endo,endo,anti*-1,14,15,16,17,17-hexachloro-18,18-diethoxypenta-cyclo[12.2.1.1^{6.9}.0^{2.13}.0^{5.10}]octadeca-7,15-diene (Garcia, Fronczek & McLaughlin, 1994, *endo*-

Fig. 1. ORTEP drawing (Johnson, 1965) of (1), representing heavy atoms as 40% probability ellipsoids and H atoms as circles of arbitrary radii; one of the two twist-boat-conformation molecules and one of the chair-conformation molecules are illustrated.

Fig. 2. ORTEP drawing (Johnson, 1965) of (2), representing heavy atoms as 40% probability ellipsoids and H atoms as circles of arbitrary radii.

Fig. 3. ORTEP drawing (Johnson, 1965) of (3), representing heavy atoms as 40% probability ellipsoids and H atoms as circles of arbitrary radii.

Fig. 4. ORTEP drawing (Johnson, 1965) of (4), representing heavy atoms as 40% probability ellipsoids and H atoms as circles of arbitrary radii.

1,10,11,12,13,13-hexachlorotricyclo[$8.2.1.0^{2.9}$]trideca-7,11-diene (Garcia, Fronczek & McLaughlin, 1994), *endo,endo,anti*-1,6,7,8,9,14,15,16-octachloro-17,17-dimethoxypentacyclo[12.2.1.1^{6.9}.0^{2.13}.0^{5.10}]octadeca-7,15-diene (Garcia, Fronczek & McLaughlin, 1992*a*), *endo,endo,endo,anti*-1,8,9,10,11,18,19,20,21,21,23,23dodecachloroheptacyclo[16.2.1.1^{3,16}.1^{8,11}.0^{2,17}.0^{4,15}.-0^{7,12}]tricosa-9,19-diene (Garcia, Fronczek & McLaughlin, 1992*b*) and *endo*-1,10,11,12-tetrachloro-13,13-dimethoxytricyclo[$8.2.1.0^{2.9}$]trideca-5,11-diene (Li, Fronczek & McLaughlin, 1992) are in agreement with those of the title compounds.

The cyclooctene rings in (1) (two of the four independent molecules) and (2) have twist-boat conformations, with torsion angles $\omega_1 \ C8-C1-C2-C3$, C4-C5-C6-C7, $\omega_2 \ C1-C2-C3-C4$, C2-C3-C4, C3-C4, C3

C5A

C6A

C7A

0.1160 (5) 0.1690 (4)

0.1027 (3)

-0.0352(4)

-0.2700 (3)

-0.1823 (3)

-0.1411 (4)

0.5785 (2)

0.5463 (2) 0.5706 (2) 10.1 (1)

8.6 (1) 11.5 (2)

-27	(3), -10.0	3)° for	(2), which are	distorted	C8A	-0.1053 (3)	-0.1277	(2) 0.0	6594 (2)	6.5 (1)
from the ideal boat $D_{\rm exc}$ conformation (of cyclooc-				C9A	-0.1184 (2)	-0.0628	(2) 0.1	7919 (2)	4.27 (7)	
tane) with torsion angles $\omega = \pm 0$, $\omega = \pm 76.4$ and				C10A	-0.2003(3)	-0.1291	(2) 0.8	8427 (2)	5.66 (8)	
tanc)	$\pm 0^{\circ}$ (Llandric	lease 10	$1 - \pm 0, w_2 - 1$	- /0.4 and	C124	-0.1265 (3)	-0.2090	(2) 0.8	8/40 (2) 8/35 (2)	6.02 (9)
$\omega_3 - \omega_3 - \omega_3$	± 0 (Hendric	KSOII, IS	(64) and $\omega_1 =$	$\pm 0, \omega_2 =$	C13A	-0.0248(2)	-0.0836	(2) 0.8	8433 (2)	4.39(7)
± /3.	.4 and $\omega_3 = \pm 0$	0° (Ivan	ov & Osawa, I	984).	C14A	-0.0804 (3)	-0.0419	(2) 0.9	9269 (2)	7.4 (1)
					O1 <i>B</i>	0.0856 (2)	0.1470	(1) 0.	7751 (1)	4.46 (5)
					C1B	-0.1330 (2)	0.2926	(2) 0.8	3321 (2)	3.98 (7)
Expe	rimental				C2B C3B	-0.0245(2) -0.0596(3)	0.3459	(2) 0.1	/986 (2)	3.71 (7)
Com	d (1)				C4B	-0.0330(3) -0.0847(3)	0.4868	(2) 0.8	8925 (2)	67(1)
Comj	pouna (1)				C5B	-0.1041 (3)	0.4101	(2) 0.9	9649 (2)	5.97 (9)
Cryst	al data				C6B	-0.1998 (3)	0.3704	(2) 0.9	9902 (2)	6.3 (1)
CuH	<u>~</u> 0		D = 1.096 Mg m	n ⁻³	C7 <i>B</i>	-0.3021 (3)	0.3956	(3) 0.9	9512 (2)	7.4 (1)
M =	204.3		Mo Ko radiation		C8B	-0.2703 (3)	0.3556	(2) 0.8	3699 (2)	6.3 (1)
Tricli	204.5 nio		$\lambda = 0.71073$ Å		C108	-0.1197(2) -0.1578(3)	0.2452	(2) 0.1	/348 (2) 5013 (2)	4./0(/)
			$\Lambda = 0.71073 \text{ A}$		C11B	-0.0672(3)	0.3761	(2) 0.0	5630(2)	5 77 (9)
P_1	1 575 (2) Å		Cell parameters I	rom 25	C12B	0.0333 (2)	0.3216	(2) 0.1	7065 (2)	4.32 (7)
a = 1	1.575 (5) A		reflections		C13B	0.0255 (2)	0.2133	(2) 0.7	7151 (2)	3.92 (7)
b = 1	4.1480 (13) A		$\theta = 9 - 12^{\circ}$		C14B	0.0738 (3)	0.1630	(2) 0.6	5356 (2)	6.15 (9)
c = 1	7.132 (3) A		$\mu = 0.06 \text{ mm}^{-1}$		010	0.3501 (2)	0.0849	(1) 0.7	7048 (1)	5.60 (5)
α = 7	7.97 (1)°		<i>T</i> = 297 K			0.3/35(2) 0.4577(2)	0.2419	(2) 0.1	/58/(2)	4.55 (7)
$\beta = 7$	0.28 (2)°		Parallelepiped		C2C	0.4377(2) 0.5242(3)	0.1447	(2) 0.1	7983 (2) 2585 (2)	4.20(7)
$\gamma = 7$	0.56 (1)°		$0.55 \times 0.52 \times 0$.32 mm	C4C	0.4332 (4)	0.1806	(3) 0.9	9454 (2)	8.5 (1)
V = 2	475.8 (9) Å ³		Colorless		C5C	0.4156 (3)	0.2836	(3) 0.9	9618 (2)	8.9 (1)
Z = 8					C6C	0.3506 (3)	0.3673	(3) 0.9	9274 (2)	9.1 (1)
					C7C	0.2815 (3)	0.3716	(3) 0.8	3677 (2)	9.0 (1)
					C8C	0.3670 (3)	0.3447	(2) 0.7	7785 (2)	6.6 (1)
Data	collection					0.4330 (3)	0.2291	(2) 0.6	5401 (2)	5.30 (8)
Enraf	-Nonius CAD-4		$\theta_{max} = 25^{\circ}$		CIIC	0.6362 (3)	0.1577	(2) 0.6	5738 (2)	5.58 (9)
diff	ractometer		$h = 0 \longrightarrow 13$		C12C	0.5511 (2)	0.0925	(2) 0.7	7210 (2)	4.38 (7)
(J. 2A	scane		$k = 15 \times 16$		C13C	0.4644 (2)	0.1151	(2) 0.6	6645 (2)	4.59 (8)
W-20	scalls		$k = -13 \rightarrow 10$		C14C	0.5266 (3)	0.0732	(2) 0.5	5806 (2)	7.2 (1)
AUSOI	puon correction:		$i = -16 \rightarrow 20$	•		0.3519 (2)	-0.1156	(1) 0.7	7274 (1)	4.64 (5)
nor	ie i o i		5 standard reflect	ions	C1D C2D	0.4055 (2)	-0.3103	(2) 0.6	5902 (2) 5614 (2)	3.8/(/)
8688	measured reflecti	ons	frequency: 166	.6/min	C3D	0.7114 (3)	-0.3163	(2) 0.6	5198 (2)	5.54 (9)
8688	independent refle	ections	intensity variat	10n: -4.6%	C4D	0.7382 (3)	-0.3352	(2) 0.5	5290 (2)	7.5 (1)
5262	observed reflection	ons	(linear corre	ection)	C5D	0.7549 (3)	0.4391	(3) 0.5	5155 (2)	6.8 (1)
[] >	$> 2\sigma(I)$]				C6D	0.6638 (3)	-0.4827	(2) 0.5	5383 (2)	6.7 (1)
					C/D C9D	0.5272 (3)	-0.4346	(2) 0.5	0814 (2)	7.0 (1)
					C9D	0.4998(3) 0.4086(3)	0 2958	(2) 0.6	7837 (2)	5.47 (8) 4 45 (8)
Refine	ement				C10D	0.5110 (3)	-0.3550	(2) 0.8	3247 (2)	5.9(1)
Refine	ement on F		$\Delta \rho_{max} = 0.36 \text{ e}$	-3	C11 <i>D</i>	0.5994 (3)	-0.3084	(2) 0.8	3009 (2)	5.97 (9)
R = 0	063		$\Delta \rho_{\text{max}} = -0.09 \text{ e}$	_ <u>Å</u> −3	C12D	0.5601 (2)	-0.2176	(2) 0.7	426 (2)	4.76 (8)
wR =	0.066		Extinction correct	tion:	CI3D CI4D	0.4143(2)	-0.1881	(2) 0.7	835 (2)	4.32 (7)
S = 2	839		$(1 + aI)^{-1}$ and	blied to F	CI4D	0.3034 (3)	-0.1465	(2) 0.8	6072 (Z)	0.0(1)
5262	reflections		$(1 + g_{1c}) = ap_1$	liont.						
558 5			$20(2) \times 10^{-7}$	ient.	Table 2	. Selected	l geometrie	c paramete	ers (Å.	•) for (1)
U ator	arameters		3.9(3) × 10	6	014-0134		1 426 (3)	- 01C_C13C	· ` `	1 /31 (3)
	$r^{2}r^{2}r^{2}r^{2}$	pically	Atomic scattering	Tactors		1	0.77(2)	01C-HOH	, C	0.74(2)
w = 4	$F_{0}^{-}[\sigma^{-}(I)]$		from Internatio	nal Tables	C1A-C2A		1.564 (3)	C1CC2C	-	1.560 (3)
+	$(0.02F_0^2)^2$		for X-ray Crys	tallography	C1A—C8A		1.530 (5)	C1C-C8C		1.526 (4)
(Δ/σ)	$m_{max} = 0.05$		(1974, Vol. IV)		C1A-C9A		1.546 (3)	C1C—C9C		1.539 (4)
					C2A - C3A		1.532 (4)	C2C - C3C		1.526 (5)
					$C_{2A} - C_{12A}$		1.544 (4)	$C_{2}C_{-}C_{1}C_{1}C_{1}C_{1}C_{1}C_{1}C_{1}C_{1$		1.542 (3)
Table	1. Fractional	atomic c	oordinates and	equivalent	C4AC5A		1.452 (6)	C4C - C5C		1.476 (6)
j	sotropic displac	cement n	arameters (Å ²) t	r(1)	C5AC6A		1.342 (5)	C5C-C6C		1.315 (5)
•		p		~ (1)	C6AC7A		1.447 (5)	C6C—C7C		1.477 (6)
$\boldsymbol{B}_{eq} = (8\pi^2/3)\sum_i\sum_j U_{ij}a_i^*a_i^*\mathbf{a}_i.\mathbf{a}_j.$			C7A - C8A		1.481 (5)	C7C-C8C		1.558 (5)		
	r.	ν	,	Ber	C9A = C10A		1.495 (4) 1.536 (4)	C9C - C10C		1.509 (5)
O 1 <i>A</i>	0.0873 (2)	-0.0526 (1) 0.7982(1)	5.29 (5)	C10A - C11A		1.307 (4)	C10C - C110	c	1.308 (4)
ClA	-0.0305 (2)	-0.1142 (2) 0.7128 (2)	4.30 (7)	C11A-C12A	l	1.509 (5)	C11C-C12	Ĉ	1.494 (4)
C2A	0.0579 (2)	-0.2104 (2) 0.7494 (2)	4.32 (7)	C12A—C13A	l	1.533 (4)	C12CC13	С	1.536 (5)
C3A	0.0645 (3)	-0.3143 (2	() 0.7320 (2)	6.6 (1)	C13A-C14A	l	1.515 (4)	C13C-C14	C	1.519 (4)
C4A	0.1160 (5)	-0.3419 (3	0.6424 (3)	13.1 (2)	01 <i>B</i> —C13 <i>B</i>		1.438 (3)	OID - CI3L)	1.436 (3)

O1B-HOHB

C1*B*—C2*B* C1*B*—C8*B*

0.73 (2)

1.561 (4) 1.531 (3)

OID-HOHD

C1D--C2D C1D--C8D

1.436 (3) 0.79 (3)

1.569 (4)

1.529 (4)

GARCIA, MORALES, FRONCZEK AND McLAUGHLIN

224 parameters

 $w = 4F_o^2[\sigma^2(I)$

H atoms refined isotropically

 $+ (0.02F_o^2)^2]^{-1}$ $(\Delta/\sigma)_{\rm max}$ = 0.01

C1B = C9B	1 545 (4)	C1D-C9D	1 541 (4)
$C^2 B = C^3 B$	1 526 (4)	$C^{2}D - C^{3}D$	1 529 (3)
C_{2B} C_{12B}	1 553 (4)	$C_{2D}^{2D} = C_{12D}^{12D}$	1.527(5)
$C_{2B} = C_{12B}$	1.555 (4)	C2D = C12D	1.541 (4)
	1.307 (3)	$C_{3D} = C_{4D}$	1.342 (3)
	1.470 (4)	C4D = C3D	1.4/4 (5)
C2B-C6B	1.312 (5)	C5D = C6D	1.303 (6)
C6B-C7B	1.458 (5)	C6D - C7D	1.488 (4)
C7BC8B	1.497 (5)	C7D-C8D	1.540 (5)
C9B-C10B	1.503 (4)	C9DC10D	1.502 (4)
C9BC13B	1.531 (3)	C9D—C13D	1.546 (4)
C10B—C11B	1.313 (5)	C10D-C11D	1.305 (5)
C11B-C12B	1.501 (4)	C11D—C12D	1.497 (4)
C12BC13B	1.538 (4)	C12D—C13D	1.539 (3)
C13B-C14B	1.515 (4)	C13D-C14D	1.518 (4)
С13А-О1А-НОНА	111 (2)	С13С—О1С—НОНС	111 (2)
C2A-C1A-C8A	118.4 (2)	C2C-C1C-C8C	119.3 (3)
C2A-C1A-C9A	102.2 (2)	C2C-C1C-C9C	101.9 (2)
C8A - C1A - C9A	1128(2)	C8C - C1C - C9C	112 9 (2)
$C_{14} - C_{24} - C_{34}$	110.0 (2)	$C_{1}C_{}C_{2}C_{}C_{3}C_{-$	1196(3)
$C_{1A} = C_{2A} = C_{3A}$	101.9(3)	$C_{1}C_{1}C_{2}C_{2}C_{2}C_{1}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2$	102.2(2)
C1A - C2A - C12A	101.8 (2)	C1C = C2C = C12C	102.3(2)
$C_{3A} - C_{2A} - C_{12A}$	112.4 (2)	$C_{3}C_{-}C_{2}C_{-}C_{1}C_{1}C_{1}C_{1}C_{1}C_{1}C_{1}C_{1$	113.4 (2)
C2A - C3A - C4A	120.0 (3)	$C_{2}C_{-}C_{3}C_{-}C_{4$	114.3 (3)
C3A—C4A—C5A	116.7 (4)	C3C—C4C—C5C	113.9 (3)
C4A—C5A—C6A	126.5 (4)	C4C—C5C—C6C	125.5 (4)
C5A—C6A—C7A	126.0 (4)	C5C—C6C—C7C	124.6 (4)
C6A-C7A-C8A	119.3 (4)	C6C-C7C-C8C	115.8 (3)
C1A - C8A - C7A	116.7 (3)	C1C-C8C-C7C	115.0 (3)
$C_1A - C_9A - C_10A$	107.2(2)	C1C - C9C - C10C	106 7 (3)
C14 - C94 - C134	101.7(2)	$C_{1}C_{-}C_{0}C_{-}C_{1}C_{0}C_{-}C_{0}C_{-}C_{0}C_{0}C_{0}C_{0}C_{0}C_{0}C_{0}C_{0$	102 5 (2)
$C_{104} = C_{104} = C_{134}$	101.7(2)		102.5(2)
$CIO_A = CIO_A = CIO_A$	100.3(2)	$C_{10} = C_{10} = C_{13} = C$	77.4 (2)
	107.2 (3)		107.5 (3)
CIUA-CIIA-CI2A	107.6 (3)	Cloc=Cllc=Cl2C	107.4 (3)
C2A - C12A - C11A	107.0 (3)	C2C - C12C - C11C	107.1 (2)
C2A-C12A-C13A	102.3 (2)	C2C-C12C-C13C	101.7 (2)
C11A—C12A—C13A	99.5 (2)	C11C-C12C-C13C	100.1 (2)
O1A-C13A-C9A	113.1 (2)	O1CC13CC9C	109.1 (2)
O1A-C13A-C12A	108.9 (2)	01C-C13C-C12C	112.9 (2)
OIA-CI3A-CI4A	108.7 (3)	01C-C13C-C14C	108.2 (3)
C9A - C13A - C12A	91.9 (2)	C9C - C13C - C12C	92 1 (2)
$C_{94} - C_{134} - C_{144}$	1159(2)	$C_{12}^{0} = C_{13}^{0} = C_{14}^{0} = C_{$	117.6 (2)
$C_{124} - C_{134} - C_{144}$	1175(2)	$C_{12} = C_{13} = C_{14} = C_{14}$	116.2(2)
	117.5(2)		110.2(2)
	109(1)		110 (2)
C2B-C1B-C8B	118.6 (2)	$C_{2D} = C_{1D} = C_{8D}$	118.8 (2)
C2B-C1B-C9B	102.3 (2)	C2D = C1D = C9D	102.5 (2)
C8B—C1B—C9B	112.2 (3)	C8D—C1D—C9D	113.3 (2)
C1B-C2B-C3B	118.5 (2)	C1D—C2D—C3D	119.1 (2)
C1BC2BC12B	102.0 (2)	C1DC2DC12D	101.9 (2)
C3B-C2B-C12B	113.1 (2)	C3DC2DC12D	113.0 (3)
C2B—C3B—C4B	117.2 (2)	C2D—C3D—C4D	115.2 (3)
C3B-C4B-C5B	118.3 (3)	C3D - C4D - C5D	116.3 (3)
C4B = C5B = C6B	124 5 (3)	C4D-C5D-C6D	125 2 (3)
$C_{5B} = C_{6B} = C_{7B}$	125.0 (3)	$C_{1D} = C_{2D} = C_{2D}$	125.0 (3)
$C_{AB} = C_{AB} = C_{AB}$	123.0(3)	C5D = C5D = C7D	123.0(3)
	117.5(2)	$C_{0}D = C_{1}D = C_{0}D$	114.8 (3)
	118.4 (3)	CID = C8D = C/D	115.2 (2)
	107.0 (2)	$C_1D = C_2D = C_1DD$	100.9 (2)
C1B-C9B-C13B	102.2 (2)	C1D = C9D = C13D	101.6 (2)
C10B—C9B—C13B	99.7 (2)	C10DC9DC13D	99.4 (3)
C9B-C10B-C11B	107.4 (3)	C9D-C10D-C11D	107.7 (2)
C10B—C11B—C12B	107.5 (2)	C10D-C11D-C12D	107.8 (3)
C2B-C12B-C11B	107.1 (2)	C2D—C12D—C11D	106.6 (2)
C2B-C12B-C13B	101.6 (2)	C2D-C12D-C13D	102.6 (3)
C11B-C12B-C13B	99.7 (3)	C11D—C12D—C13D	99.5 (2)
O1B - C13B - C9B	109.2 (2)	01D - C13D - C9D	112 5 (3)
O1B = C13B = C12B	1125(3)	OID = CI3D = CI2D	109.6 (2)
	108 6 (2)	$O_{1D} = C_{13D} = C_{14D}$	109.0 (2)
	100.0 (2)	COD = C12D = C14D	100.1(2)
C9B-C13B-C12B	92.3 (2)	$C_{9D} = C_{13D} = C_{12D}$	92.1 (2)
C9B-C13B-C14B	116.4 (3)	C9D = C13D = C14D	117.1 (2)
C12B—C13B—C14B	117.0 (2)	C12DC13DC14D	116.8 (3)
	11/1		
C8A - C1A - C2A - C3A	-1.1 (4)	loc - C1C - C2C - C3C	2.2 (4)
C6A-C7A-C8A-C1A	25.7 (5)	C6C-C7C-C8C-C1C	106.3 (4)
C4A—C5A—C6A—C7A	1.5(7)	C4C-C5C-C6C-C7C	1.5 (6)
C2A-C3A-C4A-C5A	6.2 (6)	C2CC3CC4CC5C	- 109.6 (4)
C8B-C1B-C2B-C3B	1.6 (4)	C8DC1DC2DC3D	-1.9 (4)
C6B-C7B-C8B-C1B	-1.0(4)	C6DC7DC8DC1D	109.0 (3)
C4B-C5B-C6B-C7B	-0.2 (5)	C4DC5DC6DC7D	0.3 (5)
$C_{2B} - C_{3B} - C_{4B} - C_{5B}$	-14.1(5)	$C_{2D} - C_{3D} - C_{4D} - C_{5D}$	-1073(4)
	(0)		

Compound (2)	
Crystal data	
$C_{16}H_{22}O_2$ $M_r = 246.4$ Monoclinic $P2_1/n$ $a = 8.8764 (4) \text{ Å}$ $b = 18.1005 (14) \text{ Å}$ $c = 8.9616 (5) \text{ Å}$ $\beta = 107.514 (4)^{\circ}$ $V = 1373.1 (3) \text{ Å}^3$ $Z = 4$	$D_x = 1.192 \text{ Mg m}^{-3}$ Mo K α radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 10 - 13^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 295 K Prism $0.38 \times 0.32 \times 0.25 \text{ mm}$ Colorless
Data collection Enraf-Nonius CAD-4 diffractometer ω -2 θ scans Absorption correction: none 3782 measured reflections 3462 independent reflections 2293 observed reflections $[I > \sigma(I)]$	$R_{int} = 0.016$ $\theta_{max} = 28.5^{\circ}$ $h = 0 \rightarrow 11$ $k = 0 \rightarrow 24$ $l = -12 \rightarrow 11$ 3 standard reflections frequency: 166.67 min intensity variation: <24
Refinement Refinement on F R = 0.064 wR = 0.055 S = 2.299 2293 reflections	$\Delta \rho_{\text{max}} = 0.23 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.09 \text{ e } \text{\AA}^{-3}$ Extinction correction: $(1 + gI_c)^{-1} \text{ applied to }$ Extinction coefficient:

Extinction confection.
$(1 + gI_c)^{-1}$ applied to F_c
Extinction coefficient:
$6.2(13) \times 10^{-7}$
Atomic scattering factors
from International Tables
for X-ray Crystallography
(1974, Vol. IV)

Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for (2)

$B_{\rm eq} = (8\pi^2/3)\sum_i\sum_j U_{ij}a_i^*a_j^*\mathbf{a}_i.\mathbf{a}_j.$							
	x	у	z	B_{eq}			
01	0.6711 (1)	0.49030	(7) 0.7723	7(1) 3.64(3)			
O2	0.8122 (2)	0.48113	(9) 1.0264	(1) 5.17 (4)			
C1	0.6948 (2)	0.3987 (1) 0.5422	2 (2) 3.28 (4)			
C2	0.8222 (2)	0.3686 (1) 0.6918	3 (2) 3.19 (4)			
C3	0.9201 (2)	0.3025 (1) 0.6741	(2) 4.75 (5)			
C4	1.0625 (2)	0.3192 (3	2) 0.6207	7 (3) 7.26 (7)			
C5	1.0603 (2)	0.3850 (1) 0.5237	(2) 5.45 (6)			
C6	0.9521 (2)	0.4027 (1) 0.3955	5 (2) 5.07 (5)			
C7	0.8101 (2)	0.3586 (2	2) 0.3197	(2) 6.46 (6)			
C8	0.6734 (2)	0.3612 (1) 0.3848	S (2) 5.12 (5)			
C9	0.5402 (2)	0.3959 (1) 0.5917	(2) 3.97 (4)			
C10	0.5052 (2)	0.3159 (1) 0.6087	(2) 5.25 (5)			
C11	0.6118 (2)	0.2905 (1) 0.7335	5.14(5)			
C12	0.7219 (2)	0.3528 (1) 0.8040)(2) 3.62(4)			
C13	0.6019 (2)	0.4165 (1) 0.7665	i (2) 3.59 (4)			
C14	0.4815 (2)	0.4193 (1) 0.8556	5.15 (5)			
C15	0.7679 (2)	0.5165 (1) 0.9080)(2) 3.62 (4)			
C16	0.8118 (2)	0.5944 (1) 0.8908	3 (2) 5.07 (5)			
Table	4. Selectea	l geometric	parameters	s (Å, °) for (2)			
O1-C13		1.464 (2)	C5-C6	1.296 (2)			
O1-C15		1.344 (2)	C6–C7	1.474 (3)			
O2-C15		1.199 (2)	C7—C8	1.497 (3)			

<2%

C1C2 C1C8 C2C3 C2C12	1.569 (2) 1.525 (3) 1.516 (3) 1.556 (3)	C9—C10 C10—C11 C11—C12 C12—C13	1.500 (3) 1.312 (2) 1.502 (3) 1.536 (3)	Table 5. isotr	Fraction ropic disp	al atomic placement p	coordii parame 	nates and e eters (Ų) fo	equivalent r (3)
C3—C4 C4—C5	1.511 (3) 1.472 (4)	C13—C14 C15—C16	1.516 (3) 1.483 (3)		B _{eq}	$= (8\pi^2/3)\sum_i$	$\Sigma_j U_{ij} a_i^*$	$a_j^* \mathbf{a}_i \cdot \mathbf{a}_j$.	P
$\begin{array}{c} C13-O1-C15\\ C2-C1-C8\\ C2-C1-C9\\ C8-C1-C9\\ C1-C2-C3\\ C1-C2-C12\\ C3-C2-C12\\ C3-C2-C12\\ C3-C4-C5\\ C4-C5-C6\\ C5-C6-C7\\ C6-C7-C8\\ C1-C8-C7\\ C1-C9-C10\\ C1-C9-C13\\ C8-C1-C2-C3\\ C4-C5-C6-C7\\ \end{array}$	$\begin{array}{c} 1.472 \ (4) \\ 120.2 \ (1) \\ 119.5 \ (2) \\ 102.4 \ (1) \\ 111.8 \ (1) \\ 118.2 \ (1) \\ 118.2 \ (1) \\ 118.2 \ (1) \\ 112.3 \ (2) \\ 115.9 \ (2) \\ 115.9 \ (2) \\ 115.9 \ (2) \\ 115.9 \ (2) \\ 119.0 \ (2) \\ 119.0 \ (2) \\ 119.0 \ (2) \\ 106.7 \ (2) \\ 101.9 \ (1) \\ -0.1 \ (3) \\ -1.4 \ (4) \end{array}$	$\begin{array}{c} C10-C9-C13\\ C10-C9-C11\\ C10-C11-C12\\ C2-C12-C11\\ C2-C12-C13\\ C11-C12-C13\\ O1-C13-C9\\ O1-C13-C12\\ O1-C13-C14\\ C9-C13-C14\\ C9-C13-C14\\ C12-C13-C14\\ O1-C15-O2\\ O1-C15-C16\\ O2-C15-C16\\ C6-C7-C8-C1\\ C2-C3-C4-C5\\ \end{array}$	98.7 (1) 107.8 (2) 107.8 (2) 107.0 (1) 102.4 (1) 98.7 (1) 106.0 (1) 114.9 (1) 107.7 (2) 93.0 (1) 116.9 (1) 117.5 (2) 124.1 (2) 111.0 (1) 125.0 (2) - 10.0 (3) - 27.8 (3)	Cl1 Cl2 Cl3 Cl4 O1 O2 O3 O4 Cl C2 C3 C4 C5 C6 C7 C8 C9 C10 Cl1	x 0.71217 (8) 0.48785 (6) 0.51285 (7) 0.74357 (7) 0.7232 (2) 0.6814 (2) 0.7006 (2) 0.7760 (2) 0.7760 (2) 0.7767 (2) 0.8385 (2) 0.8385 (2) 0.8385 (2) 0.7981 (2) 0.7806 (2) 0.7073 (2) 0.7288 (2) 0.7073 (2) 0.5971 (2)	y 0 0.9065 0 0.7534 0 0.5965 0 0.6552c 0.6592c 0.8400 0.8931 0.6821 0.6105 0.4813 0.3993 0.3318 0.4930 0.5344 0.6170 0.7890 0.7440	1 (9) (1) (1) 5 (9) (2) (3) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3	z 0.63144 (5) 0.55502 (6) 0.38880 (6) 0.35303 (5) 0.7268 (1) 0.8454 (1) 0.5175 (1) 0.4237 (1) 0.6018 (2) 0.5243 (2) 0.5180 (2) 0.5744 (2) 0.6392 (2) 0.7154 (2) 0.6639 (2) 0.5613 (2) 0.5174 (2)	B_{eq} 4.06 (2) 4.61 (2) 4.51 (2) 3.64 (2) 3.11 (5) 4.61 (6) 3.11 (5) 3.29 (5) 2.33 (7) 2.18 (7) 2.43 (7) 2.77 (7) 2.28 (7) 2.29 (7) 2.29 (7) 2.66 (7) 2.40 (7) 2.49 (7) 2.71 (7)
Compound (3) Crystal data				C12 C13 C14 C15	0.7242 (2) 0.7528 (2) 0.8759 (2) 0.9806 (2)	0.6827 0.6872 0.8137 0.2329 0.2912	(3) (3) (3) (3) (3)	0.4328 (2) 0.4516 (2) 0.4851 (2) 0.6826 (2) 0.7248 (2)	2.38 (7) 2.37 (7) 2.74 (7) 2.81 (7) 3.32 (8)
$C_{23}H_{28}Cl_4O_4$ $M_r = 510.3$ Monoclinic $P2_1/c$ a = 12.9664 (9) Å		$D_x = 1.428 \text{ Mg m}^-$ Mo $K\alpha$ radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from reflections	3 m 25	C16 C17 C18 C19 C20 C21 C22	0.9658 (2) 0.8511 (2) 0.8347 (2) 0.8926 (3) 0.6570 (3) 0.5500 (3) 0.9247 (3)	0.3500 0.3326 0.2054 0.1098 0.1737 0.1247 0.8492	(3) (3) (3) (3) (3) (3) (4) (4)	0.7888 (2) 0.7907 (2) 0.7589 (2) 0.8177 (2) 0.7758 (2) 0.7321 (3) 0.4606 (2)	3.27 (8) 2.60 (7) 2.68 (7) 3.78 (9) 3.48 (8) 5.4 (13 5.0 (1)
b = 11.3814 (10) A c = 16.6962 (14) Å $\beta = 105.549 (6)^{\circ}$		$\theta = 10 - 12^{\circ}$ $\mu = 0.53 \text{ mm}^{-1}$ T = 296 K		Table 6.	0.6968 (4) . Selectea	1.0109 (l geometric	(4) c paran	0.4459 (3) neters (Å, °	5.9(1)) for (3)
V = 2373.8 (7) Å ³ Z = 4		Prism $0.38 \times 0.15 \times 0.15$ Colorless	mm	Cl1—C9 Cl2—Cl0 Cl3—Cl1 Cl4—Cl2		1.768 (3) 1.699 (3) 1.707 (3) 1.768 (3)	C5-C6 C5-C14 C6-C7 C6-C17	4 7	1.574 (4) 1.555 (4) 1.533 (5) 1.563 (4)
Data collection				01 - C18 01 - C20		1.461 (3) 1.335 (4)	C9-C1	0	1.534 (4) 1.510 (4)
Enraf-Nonius CAD- diffractometer ω -2 θ scans Absorption correction empirical T_{min} = 0.975, T_{max}	-4 on: _{ax} =	$R_{int} = 0.017$ $\theta_{max} = 25^{\circ}$ $h = 0 \rightarrow 15$ $k = 0 \rightarrow 13$ $l = -19 \rightarrow 19$ 3 standard reflection	IS	O2-C20 O3-C13 O3-C22 O4-C13 O4-C23 C1-C2 C1-C8 C1-C9		1.203 (4) 1.401 (3) 1.415 (5) 1.397 (4) 1.397 (5) 1.578 (4) 1.528 (5) 1.552 (4)	C9-C1 C10-C C11-C C12-C C14-C C14-C C15-C C16-C	3 11 12 13 15 18 16 17	1.565 (5) 1.322 (5) 1.516 (4) 1.553 (5) 1.506 (4) 1.540 (5) 1.317 (5) 1.510 (4)
1.000 4582 measured refle 4158 independent re	ctions flections	frequency: 166.67 intensity variation	/ min h: <2%	C2-C3 C2-C12 C3-C4 C4-C5		1.527 (5) 1.549 (4) 1.532 (4) 1.529 (5)	C17—C C18—C C20—C	18 19 21	1.537 (5) 1.522 (5) 1.493 (5)
$[I > 3\sigma(I)]$	cions			C1801C2 C1303C2 C1304C2	20 22 23	120.0 (2) 117.4 (2) 118.1 (2)	C1C9- C1C9- C10C9-		107.6 (3) 101.5 (2) 100.4 (2)
Refinement Refinement on F R = 0.039 wR = 0.039 S = 1.580 4158 reflections 281 parameters H-atom parameters n	not	$\Delta \rho_{\text{max}} = 0.25 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.10 \text{ e } \text{\AA}^{-3}$ Extinction correction (1 + gI _c) ⁻¹ applie Extinction coefficien 4 (2) × 10 ⁻⁸ Atomic scattering fa	-3 $d to F_c$ t: ctors	$\begin{array}{c} c_{2}-c_{1}-c_{9}\\ c_{2}-c_{1}-c_{9}\\ c_{8}-c_{1}-c_{9}\\ c_{1}-c_{2}-c_{3}\\ c_{1}-c_{2}-c_{12}\\ c_{3}-c_{2}-c_{12}\\ c_{2}-c_{3}-c_{4}\\ c_{3}-c_{4}-c_{5}\\ c_{4}-c_{5}-c_{6}\\ c_{4}-c_{5}-c_{14}\\ c_{6}-c_{5}-c_{14}\\ \end{array}$	2 2 4	117.2 (3) 102.9 (2) 112.9 (3) 117.7 (3) 101.3 (2) 114.0 (2) 114.3 (2) 115.4 (3) 117.6 (3) 113.0 (3) 102.3 (2)	Cl2—Cl1 Cl2—Cl1 Cl3—Cl1 Cl3—Cl1 Cl3—Cl1 Cl4—Cl1 Cl4—Cl1 Cl4—Cl1 Cl4—Cl1 Cl4—Cl2 Cl2—Cl2 Cl2—Cl2	0C1 0C11 1C10 1C12 11C12 2C2 2C11 2C13 2C11 2C13	125.0 (2) 127.9 (2) 106.4 (3) 126.8 (3) 124.3 (2) 108.4 (2) 115.5 (2) 113.3 (2) 116.5 (2) 107.8 (3) 102.3 (2)
refined $w = 4F_o^2[\sigma^2(I) + (0.02F_o^2)^2]^{-1}$ $(\Delta/\sigma)_{max} = 0.01$		from International for X-ray Crystall (1974, Vol. IV)	l Tables ography	C5-C6-C7 C5-C6-C17 C7-C6-C17 C6-C7-C8 C1-C8-C7	7 7	119.3 (3) 101.9 (2) 111.3 (2) 116.6 (2) 114.5 (3)	C11-C1 03-C13 03-C13 03-C13 03-C13 04-C13	12C13 3O4 3C9 3C12 3C9	99.7 (3) 112.6 (3) 106.5 (2) 117.1 (3) 119.9 (3)

322

GARCIA, MORALES, FRONCZEK AND McLAUGHLIN

Cl1-C9-C1	113.0 (2)	O4-C13-C12	108.3 (2)	01	0.7297 (1)	0.180	l (1) 0.73989	(8) 2.78 (3)
Cl1-C9-C10	116.0 (2)	C9-C13-C12	91.2 (2)	O2	0.6875 (1)	0.234	9 (2) 0.85680	(9) 4.62 (4)
Cl1-C9-C13	116.7 (2)	C5-C14-C15	106.8 (3)	Cl	0.7757 (1)	0.708	4 (2) 0.5921 (1) 2.27 (3)
C5 - C14 - C18	101.9 (3)	01-C18-C17	115.1 (3)	C2	0.7850(1)	0.625	2 (2) 0.5169 (1	.) 2.16 (3)
$C_{13} - C_{14} - C_{18}$	99.8 (2)	OI - CI8 - CI9	107.6 (3)	C3	0.7540(1)	0.488	7 (2) 0.5180 (1) 2.45 (4)
C14 = C15 = C16	107.2 (3)	C14 - C18 - C17	92.8 (3)	C4	0.8377(2)	0.407.	3(2) 0.5751(1)	.) 2.71 (4)
C6-C17-C16	106.4 (3)	C17 - C18 - C19	117.3 (3)	C5	0.8003(1) 0.7837(1)	0.343	2(2) 0.0444(1) 5(2) 0.7173(1)	2.30(3)
C6-C17-C18	102.0 (2)	01 - C20 - O2	124.1(3)	C7	0.8109(2)	0.420	1(2) 0.7173(1)	2.12(3)
C16-C17-C18	99.3 (3)	01-C20-C21	110.6 (3)	C8	0.7315 (1)	0.6470	5(2) 0.6588 (1	2.40(4)
O1-C18-C14	106.5 (2)	O2-C20-C21	125.3 (3)	C9	0.7063 (2)	0.819	5 (2) 0.5498 (1) 2.53 (4)
C4-C5-C6-C7	-17(4)	$C^{2}-C^{3}-C^{4}-C^{5}$	110 1 (3)	C10	0.5960(1)	0.7678	3 (2) 0.5131 (1) 2.54 (4)
C8 - C1 - C2 - C3	-1.4(4)	$C_{2} - C_{3} - C_{4} - C_{3}$	-115.9(3)	C11	0.6034 (1)	0.6959	0.4512 (1) 2.46 (4)
			110.5 (0)	C12	0.7167 (1)	0.6994	1 (2) 0.4436 (1) 2.29 (3)
Compound (4)				C13	0.7443 (1)	0.8360	0(2) 0.4701(1) 2.68 (4)
Compound (4)				C14 C15	0.8795 (1)	0.2422	2(2) 0.6895(1)) 2.80 (4)
Crystal data				C16	0.9820 (2)	0.3079	P(2) = 0.7268(1) P(2) = 0.7877(1)	3.42(4)
$C_{21}H_{22}Cl_6O_2$		D. = 1511 Mg m	-3	C17	0.8541(2)	0.3589	P(2) = 0.7877(1)	3.39(4) 256(4)
$M_{\rm c} = 519.1$		Mo Ko radiation		C18	0.8396 (1)	0.2209	P(2) = 0.7678(1)	2.50(4)
Monoalinia		$\lambda = 0.71072$		C19	0.8976 (2)	0.1256	5 (2) 0.8294 (1) 3.52 (4)
		$\lambda = 0.71075 \text{ A}$		C20	0.6639 (2)	0.1901	(2) 0.7898 (1) 3.29 (4)
$P_{2_1/c}$		Cell parameters fi	rom 25	C21	0.5577 (2)	0.1367	7 (3) 0.7491 (2) 5.11 (6)
a = 13.0246 (6) Å		reflections		Tabla	9 Salaata		:	
<i>b</i> = 10.7445 (6) Å		$\theta = 11 - 14^{\circ}$		Table	o. selected	i geometr	ic parameters ($A, \circ)$ for (4)
c = 16.8103 (9) Å		$\mu = 0.77 \text{ mm}^{-1}$		Cl1—C9		1.753 (2)	C5-C14	1.560 (2)
$\beta = 104.017.(4)^{\circ}$		T = 295 K		Cl2—C10		1.694 (2)	C6—C7	1.523 (3)
$V = 2282.5(5) ^{3}$		Prism with hinvra	mid	Cl3—C11		1.703 (2)	C6—C17	1.559 (2)
V = 2202.3 (3) A		$0.60 \times 0.25 \times 0^{\circ}$	25 mm	Cl4—Cl2		1.762 (2)	C7—C8	1.535 (2)
Z = 4		$0.00 \times 0.33 \times 0.00$	25 11111	CI5 - CI3		1.777 (2)	C9-C10	1.524 (2)
		Coloriess		01 - 018		1.707 (2)	C10 C11	1.546 (3)
				$01 - C_{10}$		1.402(2)	CII - CII	1.519(3)
Data collection				02 - C20		1.195 (2)	C12 - C13	1.512 (3)
Enraf-Nonius CAD-4	1	$R_{\rm int} = 0.012$		C1-C2		1.577 (3)	C14-C15	1.506 (3)
diffractometer		$\theta_{\rm max} = 30^{\circ}$		C1-C8		1.524 (3)	C14-C18	1.543 (3)
ω -2 θ scans		$h = 0 \rightarrow 18$		C1C9		1.561 (2)	C15—C16	1.312 (3)
Absorption correction	••	$k = 0 \longrightarrow 15$		C2—C3		1.523 (3)	C16—C17	1.509 (3)
	1.	$k = 0 \rightarrow 15$		C2-C12		1.554 (2)	C17—C18	1.542 (3)
		$l = -23 \rightarrow 22$		C3—C4		1.539 (2)	C18—C19	1.521 (3)
$T_{\min} = 0.926, T_{\max}$	=	3 standard reflecti	ons	C4—C5		1.529 (3)	C20—C21	1.500 (3)
0.998		frequency: 166.	67 min	03-00		1.576 (5)		
7228 measured reflect	tions	intensity variati	on: <2%	C1801-	-C20	120.0 (1)	C10-C9-C13	99.1 (1)
6635 independent ref	lections			$C_2 - C_1 - C_2$	28	117.6(1)	$Cl_2 - Cl_0 - C_9$	124.8 (1)
4178 observed reflect	ions			$C_2 = C_1 = C_1$.9' 0	102.5(1) 112.5(2)	$C_2 = C_10 = C_11$	127.9(1)
$[I > 3\sigma(h)]$				$C_{1} = C_{2} = C_{1}$	י גר	112.5(2)	C_{3} C_{11} C_{10}	107.0(2)
[1 > 50(1)]				C1 - C2 - C2	212	101.8 (1)	C13 - C11 - C12	127.2(2) 1243(1)
Refinement				C3-C2-C	212	113.6(1)	C10-C11-C12	108.1 (1)
Nejmemeni				C2-C3-C	24	113.9 (1)	Cl4-Cl2-C2	115.0 (1)
Refinement on F		$\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}$	-3	C3-C4-0	25	115.0 (2)	Cl4—C12—C11	115.3 (1)
R = 0.033		$\Delta \rho_{\rm min}$ = -0.10 e	Å ⁻³	C4-C5-C	C6	117.8 (1)	Cl4-Cl2-Cl3	115.6 (1)
wR = 0.033		Extinction correcti	on:	C4-C5-C	214	113.0 (2)	C2-C12-C11	107.7 (1)
S = 1.519		$(1 + qI_{*})^{-1}$ and	lied to F.	$C_{0} = C_{0} = C_{0}$	214	102.4 (1)	$C_2 - C_{12} - C_{13}$	102.1 (1)
4178 reflections		Extinction coeffici	ant:	C5-C6-C	-/ 17	118.0(2)	CII = CI2 = CI3	99.3 (1)
351 parameters		$1.2(2) \times 10^{-7}$	cht.	C7-C6-C	217	111 1 (1)	CI5-CI3-CI	107.1(1) 114.2(1)
SST parameters		$1.2(2) \times 10$	c .	C6C7C	28	116.4 (1)	C15 - C13 - C12	113.7(1)
All H-atom parameter	rs	Atomic scattering	factors	C1-C8-0	27	114.2 (2)	Cl6-C13-C9	114.1 (1)
refined		from Internation	nal Tables	Cl1-C9-	C1	114.5 (1)	Cl6-C13-C12	115.1 (1)
$w = 4F_o^2[\sigma^2(I)]$		for X-ray Crysta	allography	Cl1-C9-	C10	116.2 (1)	C9-C13-C12	92.3 (1)
$+ (0.02F_o^2)^2]^{-1}$		(1974, Vol. IV)		Cl1-C9-	C13	116.0 (1)	C5-C14-C15	106.9 (2)
$(\Delta/\sigma)_{\rm max} = 0.02$				CI = C9 = C	210	106.8 (1)	C5-C14-C18	101.5 (2)
				C14. C15	-016	102.2 (2)	C13 - C14 - C18	99.4 (l)
Table 7. Fractional	l atomic	coordinates and	equivalent	C14-C13-		107.0(2)	C14 - C18 - C17	107.0(2)
isotronic displ	acement	narameters (Å ²) fr	r(4)	C6-C17-	C16	106.3 (2)	C14-C18-C19	94.9 (1) 117 8 (7)
ison opic aispu	accinent j		~ (~)	C6-C17-	C18	102.2 (1)	C17-C18-C19	116.8 (1)
$B_{ea} =$	$(8\pi^2/3)\Sigma_{i}$	$\sum_{i} U_{ii} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_i$.		C16-C17-	-C18	99.0 (2)	O1-C20-O2	124.3 (2)
*		, , , , , , , , , , , , , , , , , , ,	R	O1-C18-	C14	106.1 (1)	O1-C20-C21	110.1 (2)
A CII 0.71272 (5)	y 0.0525	ζ ε (5) 0 ε 1124 (3)	Deq	O1-C18-	C17	115.0 (1)	O2-C20-C21	125.6 (2)

	x	у	z	Bea
Cll	0.71272 (5)	0.95256(5)	0.61124 (3)	4.09 (1)
Cl2	0.49011 (4)	0.78818 (6)	0.55355 (4)	4.46(1)
C13	0.50820 (4)	0.60090 (6)	0.39524 (3)	4.03(1)
Cl4	0.73535 (4)	0.65776 (5)	0.34672 (3)	3.64 (1)
C15	0.88098 (4)	0.87180 (5)	0.48637 (4)	4.12(1)
C16	0.67382 (4)	0.95016 (5)	0.40280 (3)	3.77 (1)

(1): The crystal was mounted in a capillary for data collection. . The space group was determined by successful refinement of a

C2-C3-C4-C5

C6-C7-C8-C1

119.4 (2)

-116.2 (2)

-3.3 (2) -2.7 (2)

C4-C5-C6-C7

C8-C1-C2-C3

centrosymmetric model. Hydroxy H atoms were located from difference maps and refined isotropically, while other H atoms were placed in calculated positions with a C—H distance of 0.95 Å and $B_{iso} = 1.3 B_{eq}$ for the bonded C atom. The structure was solved using *SHELXS86* (Sheldrick, 1985) and refined using *MolEN* (Fair, 1990).

(2): The crystal was mounted in a capillary for data collection. The structure was solved using *MULTAN*80 (Main *et al.*, 1980). H atoms were refined isotropically, except for those attached to C4, C7 and C16. Those on C4 and C7 did not refine well and were included as fixed contributions with a C—H distance of 0.95 Å. The methyl group involving C16 is disordered and was modeled as two half-populated rotamers with six half-populated H atoms in fixed positions.

(3): The compound is isomorphous with the hexachloro analog (4). Heavy-atom positions from (4), with the exception of CI5 and Cl6, were successfully used as a beginning phasing model.

(4): The crystal was mounted in a capillary for data collection. The structure was solved using *MULTAN80* (Main *et al.*, 1980).

We thank the Louisiana Educational Quality Support Fund grant No. LEQSF (1987-90)-RD-A-5 for support of this research.

References

- Akhtar, I. A., Fray, G. I. & Yarrow, J. M. (1968). J. Chem. Soc. C, pp. 812–815.
- Eaton, P. E., Sidhu, R. S., Langford, G. E., Cullison, D. A. & Pietruszewski, C. L. (1981). *Tetrahedron*, **37**, 4479–4493.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
- Garcia, J. G., Fronczek, F. R. & McLaughlin, M. L. (1991a). Acta Cryst. C47, 206–209.
- Garcia, J. G., Fronczek, F. R. & McLaughlin, M. L. (1991b). Acta Cryst. C47, 451–453.
- Garcia, J. G., Fronczek, F. R. & McLaughlin, M. L. (1991c). Acta Cryst. C47, 1998–2000.
- Garcia, J. G., Fronczek, F. R. & McLaughlin, M. L. (1991d). Acta Cryst. C47, 2009-2011.
- Garcia, J. G., Fronczek, F. R. & McLaughlin, M. L. (1991e). Tetrahedron Lett. 32, 3289-3292.
- Garcia, J. G., Fronczek, F. R. & McLaughlin, M. L. (1992a). Acta Cryst. C48, 197-199.
- Garcia, J. G., Fronczek, F. R. & McLaughlin, M. L. (1992b). Acta Cryst. C48, 195-197.
- Garcia, J. G., Fronczek, F. R. & McLaughlin, M. L. (1994). Unpublished results.
- Garcia, J. G. & McLaughlin, M. L. (1991). Tetrahedron Lett. 32, 3293-3296.
- Hendrickson, J. B. (1964). J. Am. Chem. Soc. 86, 4854-4866.
- Ivanov, P. M. & Osawa, E. (1984). J. Comput. Chem. 5, 307-313.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.

© 1994 International Union of Crystallography Printed in Great Britain – all rights reserved

- Li, J., Fronczek, F. R. & McLaughlin, M. L. (1992). Acta Cryst. C48, 200-201.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.

Acta Cryst. (1994). C50, 324-326

2,2,4,4,6,6-Tris(2,3-naphthylenedioxy)cyclotriphosphazene

Koji Kubono, Noriko Asaka, Seiji Isoda and Takashi Kobayashi

Institute for Chemical Research, Kyoto University, Uji, Kyoto 611, Japan

TOORU TAGA

Faculty of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606, Japan

(Received 9 February 1993; accepted 8 July 1993)

Abstract

The molecular structure of the title compound, $C_{30}H_{18}N_3O_6P_3$, is distorted from that observed in related clathrate compounds. The central phosphazene core takes a boat conformation. The peripheral naphthalene rings are not planar and the five-membered exocyclic rings are bent appreciably at the O-atom positions. The packing of the distorted molecules is governed predominantly by van der Waals forces in the crystal.

Comment

Tris(2,3-naphthylenedioxy)cyclotriphosphazene (TNDOCTP), (I), functions as a host in clathration

Acta Crystallographica Section C ISSN 0108-2701 ©1994

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates, torsion angles for (1)-(4) and C—H bonds for (2) and (4) have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71468 (155 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HH1071]